enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolutional layer - Wikipedia

    en.wikipedia.org/wiki/Convolutional_layer

    In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.

  3. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    The convolution has stride 1, zero-padding, with kernel size 3-by-3. The convolution kernel is a discrete Laplacian operator. The convolutional layer is the core building block of a CNN. The layer's parameters consist of a set of learnable filters (or kernels), which have a small receptive field, but extend through the full depth of the input ...

  4. LeNet - Wikipedia

    en.wikipedia.org/wiki/LeNet

    LeNet-4 was a larger version of LeNet-1 designed to fit the larger MNIST database. It had more feature maps in its convolutional layers, and had an additional layer of hidden units, fully connected to both the last convolutional layer and to the output units. It has 2 convolutions, 2 average poolings, and 2 fully connected layers.

  5. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A bottleneck block [1] consists of three sequential convolutional layers and a residual connection. The first layer in this block is a 1x1 convolution for dimension reduction (e.g., to 1/2 of the input dimension); the second layer performs a 3x3 convolution; the last layer is another 1x1 convolution for dimension restoration.

  6. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Convolution has applications that include probability, statistics, acoustics, spectroscopy, signal processing and image processing, geophysics, engineering, physics, computer vision and differential equations. [1] The convolution can be defined for functions on Euclidean space and other groups (as algebraic structures).

  7. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    The layers constitute a kind of Markov chain such that the states at any layer depend only on the preceding and succeeding layers. DPCNs predict the representation of the layer, by using a top-down approach using the information in upper layer and temporal dependencies from previous states. [126] DPCNs can be extended to form a convolutional ...

  8. Should you throw out your black plastic cooking utensils? - AOL

    www.aol.com/lifestyle/black-plastic-spatulas...

    New details about a study that warned against black plastic spatulas and other kitchen tools have come out. (Getty Creative) (Анатолий Тушенцов via Getty Images)

  9. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    It also uses a form of dimension-reduction by concatenating the output from a convolutional layer and a pooling layer. As an example, a tensor of size 35 × 35 × 320 {\displaystyle 35\times 35\times 320} can be downscaled by a convolution with stride 2 to 17 × 17 × 320 {\displaystyle 17\times 17\times 320} , and by maxpooling with pool size ...