Search results
Results from the WOW.Com Content Network
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1 / 2 . Many consider it to be the most important unsolved problem in pure mathematics . [ 1 ]
Patterson, S.J. (1988), An introduction to the theory of the Riemann zeta-function, Cambridge Studies in Advanced Mathematics, vol. 14, Cambridge: Cambridge University Press, ISBN 0-521-33535-3, Zbl 0641.10029; Siegel, C. L. (1932), "Über Riemanns Nachlaß zur analytischen Zahlentheorie", Quellen Studien zur Geschichte der Math. Astron.
The Weyl tensor has the same basic symmetries as the Riemann tensor, but its 'analogue' of the Ricci tensor is zero: = = = = The Ricci tensor, the Einstein tensor, and the traceless Ricci tensor are symmetric 2-tensors:
The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function . Various geometrical and arithmetical objects can be described by so-called global L -functions , which are formally similar to the Riemann zeta-function.
In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges.
Riemann's original use of the explicit formula was to give an exact formula for the number of primes less than a given number. To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ y ≤ x and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x.
Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be 1 / 2 . In other words, all known nontrivial zeros of the Riemann zeta are of the form z = 1 / 2 + yi where y is a real number.
A Riemann problem, named after Bernhard Riemann, is a specific initial value problem composed of a conservation equation together with piecewise constant initial data which has a single discontinuity in the domain of interest.