Ads
related to: eulerian graphs examples math equations with steps printableeducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- 20,000+ Worksheets
Browse by grade or topic to find
the perfect printable worksheet.
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Interactive Stories
Search results
Results from the WOW.Com Content Network
In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex .
Euler diagram illustrating that the set of "animals with four legs" is a subset of "animals", but the set of "minerals" is a disjoint set (it has no members in common) with "animals" Euler diagram showing the relationships between different Solar System objects
For planar graphs, the properties of being Eulerian and bipartite are dual: a planar graph is Eulerian if and only if its dual graph is bipartite. As Welsh showed, this duality extends to binary matroids: a binary matroid is Eulerian if and only if its dual matroid is a bipartite matroid, a matroid in which every circuit has even cardinality.
The second equation is the incompressible constraint, stating the flow velocity is a solenoidal field (the order of the equations is not causal, but underlines the fact that the incompressible constraint is not a degenerate form of the continuity equation, but rather of the energy equation, as it will become clear in the following).
File:Lagrangian vs Eulerian [further explanation needed] Eulerian perspective of fluid velocity versus Lagrangian depiction of strain.. In classical field theories, the Lagrangian specification of the flow field is a way of looking at fluid motion where the observer follows an individual fluid parcel as it moves through space and time.
Every graph has a cycle basis in which every cycle is an induced cycle. In a 3-vertex-connected graph, there always exists a basis consisting of peripheral cycles, cycles whose removal does not separate the remaining graph. [4] [5] In any graph other than one formed by adding one edge to a cycle, a peripheral cycle must be an induced cycle.
Ads
related to: eulerian graphs examples math equations with steps printableeducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch