Search results
Results from the WOW.Com Content Network
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
In terms of partition, 20 / 5 means the size of each of 5 parts into which a set of size 20 is divided. For example, 20 apples divide into five groups of four apples, meaning that "twenty divided by five is equal to four". This is denoted as 20 / 5 = 4, or 20 / 5 = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is ...
Arc: any connected part of a circle. Specifying two end points of an arc and a centre allows for two arcs that together make up a full circle. Centre: the point equidistant from all points on the circle. Chord: a line segment whose endpoints lie on the circle, thus dividing a circle into two segments.
Inscribe a square in the circle, so that its four corners lie on the circle. Between the square and the circle are four segments. If the total area of those gaps, G 4, is greater than E, split each arc in half. This makes the inscribed square into an inscribed octagon, and produces eight segments with a smaller total gap, G 8.
However, there are three distinct ways of partitioning a square into three similar rectangles: [1] [2] The trivial solution given by three congruent rectangles with aspect ratio 3:1. The solution in which two of the three rectangles are congruent and the third one has twice the side length of the other two, where the rectangles have aspect ...
Both of these lines divide the perimeter of the quadrilateral into two equal parts. More importantly, the Nagel point N, the "area centroid" G, and the incenter I are collinear in this order, and NG = 2GI. This line is called the Nagel line of a tangential quadrilateral. [21]
Another theory is that the Babylonians subdivided the circle using the angle of an equilateral triangle as the basic unit, and further subdivided the latter into 60 parts following their sexagesimal numeric system. [7] [8] The earliest trigonometry, used by the Babylonian astronomers and their Greek successors, was based on chords of a circle ...
More generally, a half-space is either of the two parts into which a hyperplane divides an n-dimensional space. [2] That is, the points that are not incident to the hyperplane are partitioned into two convex sets (i.e., half-spaces), such that any subspace connecting a point in one set to a point in the other must intersect the hyperplane.