Ads
related to: easy geometry formulas
Search results
Results from the WOW.Com Content Network
Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities
More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...
Berger–Kazdan comparison theorem (Riemannian geometry) Bernstein's theorem (approximation theory) Bernstein's theorem (functional analysis) Berry–Esséen theorem (probability theory) Bertini's theorem (algebraic geometry) Bertrand–Diquet–Puiseux theorem (differential geometry) Bertrand's ballot theorem (probability theory, combinatorics)
This formula is also known as the shoelace formula and is an easy way to solve for the area of a coordinate triangle by substituting the 3 points (x 1,y 1), (x 2,y 2), and (x 3,y 3). The shoelace formula can also be used to find the areas of other polygons when their vertices are known.
Afrikaans; العربية; Asturianu; Azərbaycanca; বাংলা; 閩南語 / Bân-lâm-gú; Беларуская (тарашкевіца) Bosanski; Чӑвашла
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences. Geometry is one of the oldest mathematical sciences.
In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, it is a piecewise-linear Jordan curve consisting of finitely many line segments. These polygons include as special cases the convex polygons, star-shaped polygons, and monotone polygons.
In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).
Ads
related to: easy geometry formulas