enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newcomb's paradox - Wikipedia

    en.wikipedia.org/wiki/Newcomb's_paradox

    The problem is considered a paradox because two seemingly logical analyses yield conflicting answers regarding which choice maximizes the player's payout. Considering the expected utility when the probability of the predictor being right is certain or near-certain, the player should choose box B.

  3. Berkson's paradox - Wikipedia

    en.wikipedia.org/wiki/Berkson's_paradox

    Berkson's paradox arises because the conditional probability of given within the three-cell subset equals the conditional probability in the overall population, but the unconditional probability within the subset is inflated relative to the unconditional probability in the overall population, hence, within the subset, the presence of decreases ...

  4. Bertrand paradox (probability) - Wikipedia

    en.wikipedia.org/wiki/Bertrand_paradox_(probability)

    The Bertrand paradox is a problem within the classical interpretation of probability theory. Joseph Bertrand introduced it in his work Calcul des probabilités (1889) [1] as an example to show that the principle of indifference may not produce definite, well-defined results for probabilities if it is applied uncritically when the domain of possibilities is infinite.

  5. Problem of points - Wikipedia

    en.wikipedia.org/wiki/Problem_of_points

    The problem of points, also called the problem of division of the stakes, is a classical problem in probability theory. One of the famous problems that motivated the beginnings of modern probability theory in the 17th century, it led Blaise Pascal to the first explicit reasoning about what today is known as an expected value .

  6. Negative probability - Wikipedia

    en.wikipedia.org/wiki/Negative_probability

    Note that when a quasi-probability is larger than 1, then 1 minus this value gives a negative probability. In the reliable facility location context, the truly physically verifiable observation is the facility disruption states (whose probabilities are ensured to be within the conventional range [0,1]), but there is no direct information on the ...

  7. Conditional probability distribution - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability...

    Then the unconditional probability that = is 3/6 = 1/2 (since there are six possible rolls of the dice, of which three are even), whereas the probability that = conditional on = is 1/3 (since there are three possible prime number rolls—2, 3, and 5—of which one is even).

  8. Barnard's test - Wikipedia

    en.wikipedia.org/wiki/Barnard's_test

    The operational difference between Barnard’s exact test and Fisher’s exact test is how they handle the nuisance parameter(s) of the common success probability, when calculating the p value. Fisher's exact test avoids estimating the nuisance parameter(s) by conditioning on both margins, an approximately ancillary statistic that constrains ...

  9. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    P(A|B) may or may not be equal to P(A), i.e., the unconditional probability or absolute probability of A. If P(A|B) = P(A), then events A and B are said to be independent: in such a case, knowledge about either event does not alter the likelihood of each other. P(A|B) (the conditional probability of A given B) typically differs from P(B|A).