enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Variational Bayesian methods - Wikipedia

    en.wikipedia.org/wiki/Variational_Bayesian_methods

    Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning.They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as ...

  3. PyMC - Wikipedia

    en.wikipedia.org/wiki/PyMC

    Previous versions of PyMC were also used widely, for example in climate science, [21] public health, [22] neuroscience, [23] and parasitology. [ 24 ] [ 25 ] After Theano announced plans to discontinue development in 2017, [ 26 ] the PyMC team evaluated TensorFlow Probability as a computational backend, [ 27 ] but decided in 2020 to fork Theano ...

  4. Bayesian experimental design - Wikipedia

    en.wikipedia.org/wiki/Bayesian_experimental_design

    The theory of Bayesian experimental design [1] is to a certain extent based on the theory for making optimal decisions under uncertainty. The aim when designing an experiment is to maximize the expected utility of the experiment outcome.

  5. Reparameterization trick - Wikipedia

    en.wikipedia.org/wiki/Reparameterization_trick

    The reparameterization trick (aka "reparameterization gradient estimator") is a technique used in statistical machine learning, particularly in variational inference, variational autoencoders, and stochastic optimization.

  6. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.

  7. Empirical Bayes method - Wikipedia

    en.wikipedia.org/wiki/Empirical_Bayes_method

    Empirical Bayes methods can be seen as an approximation to a fully Bayesian treatment of a hierarchical Bayes model.. In, for example, a two-stage hierarchical Bayes model, observed data = {,, …,} are assumed to be generated from an unobserved set of parameters = {,, …,} according to a probability distribution ().

  8. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    [3] [4] For example, in Bayesian inference, Bayes' theorem can be used to estimate the parameters of a probability distribution or statistical model. Since Bayesian statistics treats probability as a degree of belief, Bayes' theorem can directly assign a probability distribution that quantifies the belief to the parameter or set of parameters.

  9. Bayesian programming - Wikipedia

    en.wikipedia.org/wiki/Bayesian_programming

    The transition model () and the observation model () are both specified using Gaussian laws with means that are linear functions of the conditioning variables. With these hypotheses and by using the recursive formula, it is possible to solve the inference problem analytically to answer the usual P ( S T ∣ O 0 ∧ ⋯ ∧ O T ∧ π ...