enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector, the state vector. If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  3. Observability - Wikipedia

    en.wikipedia.org/wiki/Observability

    Consider a physical system modeled in state-space representation. A system is said to be observable if, for every possible evolution of state and control vectors, the current state can be estimated using only the information from outputs (physically, this generally corresponds to information obtained by sensors). In other words, one can ...

  4. State observer - Wikipedia

    en.wikipedia.org/wiki/State_observer

    In control theory, a state observer, state estimator, or Luenberger observer is a system that provides an estimate of the internal state of a given real system, from measurements of the input and output of the real system. It is typically computer-implemented, and provides the basis of many practical applications.

  5. Control theory - Wikipedia

    en.wikipedia.org/wiki/Control_theory

    Unlike the frequency domain approach, the use of the state-space representation is not limited to systems with linear components and zero initial conditions. "State space" refers to the space whose axes are the state variables. The state of the system can be represented as a point within that space. [17] [18]

  6. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  7. Ackermann's formula - Wikipedia

    en.wikipedia.org/wiki/Ackermann's_Formula

    In control theory, Ackermann's formula is a control system design method for solving the pole allocation problem for invariant-time systems by Jürgen Ackermann. [1] One of the primary problems in control system design is the creation of controllers that will change the dynamics of a system by changing the eigenvalues of the matrix representing the dynamics of the closed-loop system. [2]

  8. Phase space - Wikipedia

    en.wikipedia.org/wiki/Phase_space

    The phase space of a physical system is the set of all possible physical states of the system when described by a given parameterization. Each possible state corresponds uniquely to a point in the phase space. For mechanical systems, the phase space usually consists of all possible values of the position and momentum parameters.

  9. Controllability - Wikipedia

    en.wikipedia.org/wiki/Controllability

    For the simplest example of a continuous, LTI system, the row dimension of the state space expression ˙ = + determines the interval; each row contributes a vector in the state space of the system. If there are not enough such vectors to span the state space of x {\displaystyle \mathbf {x} } , then the system cannot achieve controllability.