Search results
Results from the WOW.Com Content Network
The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.
In quantum mechanics a state space is a separable complex Hilbert space.The dimension of this Hilbert space depends on the system we choose to describe. [1] [2] The different states that could come out of any particular measurement form an orthonormal basis, so any state vector in the state space can be written as a linear combination of these basis vectors.
However, since s is an unphysical parameter, physical states must be left invariant by "s-evolution", and so the physical state space is the kernel of H − E (this requires the use of a rigged Hilbert space and a renormalization of the norm). This is related to the quantization of constrained systems and quantization of gauge theories. It is ...
In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system , named after the physicist Felix Bloch. [ 1 ] Mathematically each quantum mechanical system is associated with a separable complex Hilbert space H {\displaystyle H} .
Vacuum World, a shortest path problem with a finite state space. In computer science, a state space is a discrete space representing the set of all possible configurations of a "system". [1] It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory.
In functional analysis, a state of an operator system is a positive linear functional of norm 1. States in functional analysis generalize the notion of density matrices in quantum mechanics, which represent quantum states , both mixed states and pure states .
The phase space of a physical system is the set of all possible physical states of the system when described by a given parameterization. Each possible state corresponds uniquely to a point in the phase space. For mechanical systems, the phase space usually consists of all possible values of the position and momentum parameters.
In contrast to the frequency domain analysis of the classical control theory, modern control theory utilizes the time-domain state space representation, [citation needed] a mathematical model of a physical system as a set of input, output and state variables related by first-order differential equations. To abstract from the number of inputs ...