Search results
Results from the WOW.Com Content Network
Half-life (symbol t ½) is the time required for a quantity (of substance) to reduce to half of its initial value.The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive.
An effective half-life of the drug will involve a decay constant that represents the sum of the biological and physical decay constants, as in the formula: = + With the decay constant it is possible to calculate the effective half-life using the formula:
Absorption half-life 1 h, elimination half-life 12 h. Biological half-life (elimination half-life, pharmacological half-life) is the time taken for concentration of a biological substance (such as a medication) to decrease from its maximum concentration (C max) to half of C max in the blood plasma.
Half-life T 1/2 is defined as the length of time for half of a given ... Experimentally measured specific activity can be used to calculate the half-life of a ...
Half time is the time taken by a quantity to reach one half of its extremal value, where the rate of change is proportional to the difference between the present value and the extremal value (i.e. in exponential decay processes). It is synonymous with half-life, but used in slightly different contexts.
There is an important relationship between clearance, elimination half-life and distribution volume. The elimination rate constant of a drug K e l {\displaystyle K_{el}} is equivalent to total clearance divided by the distribution volume
The absorption rate constant K a is a value used in pharmacokinetics to describe the rate at which a drug enters into the system. It is expressed in units of time −1. [1] The K a is related to the absorption half-life (t 1/2a) per the following equation: K a = ln(2) / t 1/2a.
t 1/2 is the half-life time of the drug, which is the time needed for the plasma drug concentration to drop to its half Therefore, the amount of drug present in the body at time t A t {\displaystyle A_{t}} is;