enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    For the chi-squared distribution, only the positive integer numbers of degrees of freedom (circles) are meaningful. By the central limit theorem , because the chi-squared distribution is the sum of k {\displaystyle k} independent random variables with finite mean and variance, it converges to a normal distribution for large k {\displaystyle k} .

  3. Chi distribution - Wikipedia

    en.wikipedia.org/wiki/Chi_distribution

    The chi distribution has one positive integer parameter , which specifies the degrees of freedom (i.e. the number of random variables ). The most familiar examples are the Rayleigh distribution (chi distribution with two degrees of freedom ) and the Maxwell–Boltzmann distribution of the molecular speeds in an ideal gas (chi distribution with ...

  4. Chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_test

    A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...

  5. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    The chi-squared statistic can then be used to calculate a p-value by comparing the value of the statistic to a chi-squared distribution. The number of degrees of freedom is equal to the number of cells , minus the reduction in degrees of freedom, . The chi-squared statistic can be also calculated as

  6. Degrees of freedom (statistics) - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom...

    The demonstration of the t and chi-squared distributions for one-sample problems above is the simplest example where degrees-of-freedom arise. However, similar geometry and vector decompositions underlie much of the theory of linear models , including linear regression and analysis of variance .

  7. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    The degree of freedom, =, equals the number of observations n minus the number of fitted parameters m. In weighted least squares , the definition is often written in matrix notation as χ ν 2 = r T W r ν , {\displaystyle \chi _{\nu }^{2}={\frac {r^{\mathrm {T} }Wr}{\nu }},} where r is the vector of residuals, and W is the weight matrix, the ...

  8. Proofs related to chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Proofs_related_to_chi...

    Here is one based on the distribution with 1 degree of freedom. Suppose that X {\displaystyle X} and Y {\displaystyle Y} are two independent variables satisfying X ∼ χ 1 2 {\displaystyle X\sim \chi _{1}^{2}} and Y ∼ χ 1 2 {\displaystyle Y\sim \chi _{1}^{2}} , so that the probability density functions of X {\displaystyle X} and Y ...

  9. Noncentral chi distribution - Wikipedia

    en.wikipedia.org/wiki/Noncentral_chi_distribution

    If are k independent, normally distributed random variables with means and variances , then the statistic = = is distributed according to the noncentral chi distribution. The noncentral chi distribution has two parameters: which specifies the number of degrees of freedom (i.e. the number of ), and which is related to the mean of the random variables b