enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Newton's method can be used to find a minimum or maximum of a function f(x). The derivative is zero at a minimum or maximum, so local minima and maxima can be found by applying Newton's method to the derivative. [39] The iteration becomes: + = ′ ″ ().

  4. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    Quasi-Newton methods for optimization are based on Newton's method to find the stationary points of a function, points where the gradient is 0. Newton's method assumes that the function can be locally approximated as a quadratic in the region around the optimum, and uses the first and second derivatives to find the stationary point.

  5. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    The vertex is also the maximum point if a < 0, or the minimum point if a > 0. ... A bivariate quadratic function is a second-degree polynomial of the form ...

  6. Line search - Wikipedia

    en.wikipedia.org/wiki/Line_search

    Cubic fit fits to a degree-three polynomial, using both the function values and its derivative at the last two points. If the method is started close enough to a non-degenerate local minimum, then it has quadratic convergence. Curve-fitting methods have superlinear convergence when started close enough to the local minimum, but might diverge ...

  7. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    The function f(x) = ax 2 + bx + c is a quadratic function. [16] The graph of any quadratic function has the same general shape, which is called a parabola. The location and size of the parabola, and how it opens, depend on the values of a, b, and c. If a > 0, the parabola has a minimum point and opens upward

  8. Powell's method - Wikipedia

    en.wikipedia.org/wiki/Powell's_method

    Powell's method, strictly Powell's conjugate direction method, is an algorithm proposed by Michael J. D. Powell for finding a local minimum of a function. The function need not be differentiable, and no derivatives are taken. The function must be a real-valued function of a fixed number of real-valued inputs. The caller passes in the initial point.

  9. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    That is, h is the x-coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h), and k is the minimum value (or maximum value, if a < 0) of the quadratic function. One way to see this is to note that the graph of the function f(x) = x 2 is a parabola whose vertex is at the origin (0, 0).