Search results
Results from the WOW.Com Content Network
Anaerobic glycolysis is the transformation of glucose to lactate when limited amounts of oxygen (O 2) are available. [1] This occurs in health as in exercising and in disease as in sepsis and hemorrhagic shock. [1] providing energy for a period ranging from 10 seconds to 2 minutes.
Anaerobic glycolysis exclusively uses glucose (and glycogen) as a fuel in the absence of oxygen, or more specifically, when ATP is needed at rates that exceed those provided by aerobic metabolism. The consequence of such rapid glucose breakdown is the formation of lactic acid (or more appropriately, its conjugate base lactate at biological pH ...
Aerobic metabolism is up to 15 times more efficient than anaerobic metabolism (which yields 2 molecules of ATP per 1 molecule of glucose). However, some anaerobic organisms, such as methanogens are able to continue with anaerobic respiration , yielding more ATP by using inorganic molecules other than oxygen as final electron acceptors in the ...
Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.
d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...
Cori cycle. The Cori cycle (also known as the lactic acid cycle), named after its discoverers, Carl Ferdinand Cori and Gerty Cori, [1] is a metabolic pathway in which lactate, produced by anaerobic glycolysis in muscles, is transported to the liver and converted to glucose, which then returns to the muscles and is cyclically metabolized back to lactate.
Anaerobic respiration is correspondingly less efficient than aerobic respiration. In the absence of oxygen, not all of the carbon-carbon bonds in glucose can be broken to release energy. A great deal of extractable energy is left in the waste products. Anaerobic respiration generally occurs in prokaryotes in environments that do not contain oxygen.
The location where glycolysis, aerobic or anaerobic, occurs is in the cytosol of the cell. In glycolysis, a six-carbon glucose molecule is split into two three-carbon molecules called pyruvate. These carbon molecules are oxidized into NADH and ATP. For the glucose molecule to oxidize into pyruvate, an input of ATP molecules is required.