enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Imaginary number - Wikipedia

    en.wikipedia.org/wiki/Imaginary_number

    An illustration of the complex plane. The imaginary numbers are on the vertical coordinate axis. Although the Greek mathematician and engineer Heron of Alexandria is noted as the first to present a calculation involving the square root of a negative number, [6] [7] it was Rafael Bombelli who first set down the rules for multiplication of complex numbers in 1572.

  3. Imaginary unit - Wikipedia

    en.wikipedia.org/wiki/Imaginary_unit

    Square roots of negative numbers are called imaginary because in early-modern mathematics, only what are now called real numbers, obtainable by physical measurements or basic arithmetic, were considered to be numbers at all – even negative numbers were treated with skepticism – so the square root of a negative number was previously considered undefined or nonsensical.

  4. Square (algebra) - Wikipedia

    en.wikipedia.org/wiki/Square_(algebra)

    The square of the absolute value of a complex number is called its absolute square, squared modulus, or squared magnitude. [1] [better source needed] It is the product of the complex number with its complex conjugate, and equals the sum of the squares of the real and imaginary parts of the complex number.

  5. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    For example, the equation (+) = has no real solution, because the square of a real number cannot be negative, but has the two nonreal complex solutions + and . Addition, subtraction and multiplication of complex numbers can be naturally defined by using the rule i 2 = − 1 {\displaystyle i^{2}=-1} along with the associative , commutative , and ...

  6. Negative number - Wikipedia

    en.wikipedia.org/wiki/Negative_number

    Negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common-sense idea of an opposite is reflected in arithmetic. For example, − ‍ (−3) = 3 because the opposite of an opposite is the original value.

  7. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    In mathematics, Euler's identity [note 1] (also known as Euler's equation) is the equality + = where . is Euler's number, the base of natural logarithms, is the imaginary unit, which by definition satisfies =, and

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]