enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    However, because integration is the inverse operation of differentiation, Lagrange's notation for higher order derivatives extends to integrals as well. Repeated integrals of f may be written as f ( − 1 ) ( x ) {\displaystyle f^{(-1)}(x)} for the first integral (this is easily confused with the inverse function f − 1 ( x ) {\displaystyle f ...

  3. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.

  4. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  5. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The complex-step derivative formula is only valid for calculating first-order derivatives. A generalization of the above for calculating derivatives of any order employs multicomplex numbers , resulting in multicomplex derivatives.

  6. Differential operator - Wikipedia

    en.wikipedia.org/wiki/Differential_operator

    The most common differential operator is the action of taking the derivative. Common notations for taking the first derivative with respect to a variable x include: , , , and . When taking higher, nth order derivatives, the operator may be written:

  7. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    For example, the second order partial derivatives of a scalar function of n variables can be organized into an n by n matrix, the Hessian matrix. One of the subtle points is that the higher derivatives are not intrinsically defined, and depend on the choice of the coordinates in a complicated fashion (in particular, the Hessian matrix of a ...

  8. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +. The rule may be extended or generalized to products of three or more functions, to a rule for higher-order derivatives of a product, and to other contexts.

  9. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f: