Search results
Results from the WOW.Com Content Network
In a system using segmentation, computer memory addresses consist of a segment id and an offset within the segment. [3] A hardware memory management unit (MMU) is responsible for translating the segment and offset into a physical address, and for performing checks to make sure the translation can be done and that the reference to that segment and offset is permitted.
A final "sweep" of the memory areas then frees white objects. The mark and sweep strategy has the advantage that, once the condemned set is determined, either a moving or non-moving collection strategy can be pursued. This choice of strategy can be made at runtime, as available memory permits.
Unlike virtual storage—paging or segmentation, rollout/rollin does not require any special memory management hardware; however, unless the system has relocation hardware such as a memory map or base and bounds registers, the program must be rolled back in to its original memory locations. Rollout/rollin has been largely superseded by virtual ...
Stop-and-copy garbage collection in a Lisp architecture: [1] Memory is divided into working and free memory; new objects are allocated in the former. When it is full (depicted), garbage collection is performed: All data structures still in use are located by pointer tracing and copied into consecutive locations in free memory.
Memory management (also dynamic memory management, dynamic storage allocation, or dynamic memory allocation) is a form of resource management applied to computer memory.The essential requirement of memory management is to provide ways to dynamically allocate portions of memory to programs at their request, and free it for reuse when no longer needed.
mimalloc (pronounced "me-malloc") is a free and open-source compact general-purpose memory allocator developed by Microsoft [2] with focus on performance characteristics. The library is about 11000 lines of code and works as a drop-in replacement for malloc of the C standard library [3] and requires no additional code changes.
Four registers are used to refer to four segments on the 16-bit x86 segmented memory architecture. DS (data segment), CS (code segment), SS (stack segment), and ES (extra segment). Another 16-bit register can act as an offset into a given segment, and so a logical address on this platform is written segment:offset, typically in hexadecimal ...
Overlays are not a method of paging RAM to disk but merely of minimizing the program's RAM use. Subsequent architectures used memory segmentation, and individual program segments became the units exchanged between disk and RAM. A segment was the program's entire code segment or data segment, or sometimes other large data structures.