Search results
Results from the WOW.Com Content Network
Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, or superheavies for short, are the chemical elements with atomic number greater than 104. [1] The superheavy elements are those beyond the actinides in the periodic table; the last actinide is lawrencium (atomic number 103).
The atmospheric carbon cycle also strongly influences Earth's energy balance through the greenhouse effect, and affects the acidity or alkalinity of the planet's surface waters and soils. Despite comprising less than 0.05% of all atmospheric gases by mole fraction , [ 7 ] the recent rise in carbon concentrations has caused substantial global ...
Agricultural interest in 18th-century soil chemistry led to better understanding of nutrients and their connection to biochemical processes. This relationship between the cycles of organic life and their chemical products was further expanded upon by Dumas and Boussingault in a 1844 paper that is considered an important milestone in the development of biogeochemistry.
A biogeochemical cycle, or more generally a cycle of matter, [1] is the movement and transformation of chemical elements and compounds between living organisms, the atmosphere, and the Earth's crust. Major biogeochemical cycles include the carbon cycle, the nitrogen cycle and the water cycle. In each cycle, the chemical element or molecule is ...
The slow or geological cycle may extend deep into the mantle and can take millions of years to complete, moving carbon through the Earth's crust between rocks, soil, ocean and atmosphere. [ 2 ] The fast carbon cycle involves relatively short-term biogeochemical processes between the environment and living organisms in the biosphere (see diagram ...
Soil chemistry is the study of the chemical characteristics of soil.Soil chemistry is affected by mineral composition, organic matter and environmental factors. In the early 1870s a consulting chemist to the Royal Agricultural Society in England, named J. Thomas Way, performed many experiments on how soils exchange ions, and is considered the father of soil chemistry. [1]
The global soils contain up to 3150 Pg of carbon, of which 450 Pg exist in wetlands and 400 Pg in permanently frozen soils. The soils contain more than four times the carbon as the atmosphere. [30] Researchers have estimated that soil respiration accounts for 77 Pg of carbon released to the atmosphere each year. [31]
The arsenic (As) cycle is the biogeochemical cycle of natural and anthropogenic exchanges of arsenic terms through the atmosphere, lithosphere, pedosphere, hydrosphere, and biosphere. Although arsenic is naturally abundant in the Earth's crust, long-term exposure and high concentrations of arsenic can be detrimental to human health. [1] [2]