enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Probability-generating function - Wikipedia

    en.wikipedia.org/.../Probability-generating_function

    The probability generating function of a binomial random variable, the number of successes in trials, with probability of success in each trial, is () = [() +]. Note : it is the n {\displaystyle n} -fold product of the probability generating function of a Bernoulli random variable with parameter p {\displaystyle p} .

  3. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  4. Probability mass function - Wikipedia

    en.wikipedia.org/wiki/Probability_mass_function

    The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1. In probability and statistics, a probability mass function (sometimes called probability function or frequency function [1]) is a function that gives the probability that a discrete random variable is exactly equal to some value. [2]

  5. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Dirac comb of period 2 π, although not strictly a function, is a limiting form of many directional distributions. It is essentially a wrapped Dirac delta function. It represents a discrete probability distribution concentrated at 2 π n — a degenerate distribution — but the notation treats it as if it were a continuous distribution.

  6. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

  7. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).

  8. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    The concept of probability function is made more rigorous by defining it as the element of a probability space (,,), where is the set of possible outcomes, is the set of all subsets whose probability can be measured, and is the probability function, or probability measure, that assigns a probability to each of these measurable subsets .

  9. Q-function - Wikipedia

    en.wikipedia.org/wiki/Q-function

    In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.