enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler tour technique - Wikipedia

    en.wikipedia.org/wiki/Euler_tour_technique

    The Euler tour technique (ETT), named after Leonhard Euler, is a method in graph theory for representing trees. The tree is viewed as a directed graph that contains two directed edges for each edge in the tree. The tree can then be represented as a Eulerian circuit of the directed graph, known as the Euler tour representation (ETR) of the tree

  3. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once

  4. Graph Theory, 1736–1936 - Wikipedia

    en.wikipedia.org/wiki/Graph_Theory,_1736–1936

    First edition. Graph Theory, 1736–1936 is a book in the history of mathematics on graph theory.It focuses on the foundational documents of the field, beginning with the 1736 paper of Leonhard Euler on the Seven Bridges of Königsberg and ending with the first textbook on the subject, published in 1936 by Dénes KÅ‘nig.

  5. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    As special cases, the order-zero graph (a forest consisting of zero trees), a single tree, and an edgeless graph, are examples of forests. Since for every tree V − E = 1, we can easily count the number of trees that are within a forest by subtracting the difference between total vertices and total edges. V − E = number of trees in a forest.

  6. Pearls in Graph Theory - Wikipedia

    en.wikipedia.org/wiki/Pearls_in_Graph_Theory

    The "pearls" of the title include theorems, proofs, problems, and examples in graph theory.The book has ten chapters; after an introductory chapter on basic definitions, the remaining chapters material on graph coloring; Hamiltonian cycles and Euler tours; extremal graph theory; subgraph counting problems including connections to permutations, derangements, and Cayley's formula; graph ...

  7. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    Euler stated the fundamental results for this problem in terms of the number of odd vertices in the graph, which the handshaking lemma restricts to be an even number. If this number is zero, an Euler tour exists, and if it is two, an Euler path exists. Otherwise, the problem cannot be solved.

  8. BEST theorem - Wikipedia

    en.wikipedia.org/wiki/BEST_theorem

    In 1736, Euler showed that G has an Eulerian circuit if and only if G is connected and the indegree is equal to outdegree at every vertex. In this case G is called Eulerian. We denote the indegree of a vertex v by deg(v). The BEST theorem states that the number ec(G) of Eulerian circuits in a connected Eulerian graph G is given by the formula

  9. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    Euler's formula can also be proved as follows: if the graph isn't a tree, then remove an edge which completes a cycle. This lowers both e and f by one, leaving v – e + f constant. Repeat until the remaining graph is a tree; trees have v = e + 1 and f = 1, yielding v – e + f = 2, i. e., the Euler characteristic is 2.