Search results
Results from the WOW.Com Content Network
For example, very curvy ear canals, narrow ear canals, or surgical ears are more prone to earwax buildup. When wax builds up, it causes muffled hearing, tinnitus, or aural fullness (plugged-up ...
The stereocilia (hair cells) of the inner ear can become subjected to bending from loud noises. Because they are not regeneratable in humans, any major damage or loss of these hair cells leads to permanent hearing impairment and other hearing-related diseases. [2] Outer hair cells serve as acoustic amplifiers for stimulation of the inner hair ...
Using both ear muffs (whether passive or active) and earplugs simultaneously results in maximum protection, but the efficacy of such combined protection relative to preventing permanent ear damage is inconclusive, with evidence indicating that a combined noise reduction ratio (NRR) of only 36 dB (C-weighted) is the maximum possible using ear ...
Hyperacusis is an increased sensitivity to sound and a low tolerance for environmental noise. Definitions of hyperacusis can vary significantly; it often revolves around damage to or dysfunction of the stapes bone, stapedius muscle or tensor tympani ().
Diver clearing ears Section of the human ear, the Eustachian tube is shown in colour. Ear clearing, clearing the ears or equalization is any of various maneuvers to equalize the pressure in the middle ear with the outside pressure, by letting air enter along the Eustachian tubes, as this does not always happen automatically when the pressure in the middle ear is lower than the outside pressure.
Conductive hearing loss (CHL) occurs when there is a problem transferring sound waves anywhere along the pathway through the outer ear, tympanic membrane (eardrum), or middle ear . If a conductive hearing loss occurs in conjunction with a sensorineural hearing loss, it is referred to as a mixed hearing loss.
Saccular acoustic sensitivity is a measurement of the ear's affectability to sound. The saccule's normal function is to keep the body balanced, but it is believed to have some hearing function for special frequencies and tones.
The outer ear pathway corresponds to the sound pressure generated in the ear canal cavity due to the vibration of the ear canal wall, which constitutes the source of the occlusion effect. At low frequencies, the outer ear pathway is negligible when the ear canal is open but dominates when it is occluded.