enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    There is a half-life describing any exponential-decay process. For example: As noted above, in radioactive decay the half-life is the length of time after which there is a 50% chance that an atom will have undergone nuclear decay. It varies depending on the atom type and isotope, and is usually determined experimentally. See List of nuclides.

  3. Decay energy - Wikipedia

    en.wikipedia.org/wiki/Decay_energy

    The molar weight is 59.93. The half life T of 5.27 year corresponds to the activity A = N [ ln(2) / T ], where N is the number of atoms per mol, and T is the half-life. Taking care of the units the radiation power for 60 Co is 17.9 W/g Radiation power in W/g for several isotopes: 60 Co: 17.9 238 Pu: 0.57 137 Cs: 0.6 241 Am: 0.1 210 Po: 140 (T ...

  4. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Half-life of a radioisotope: ... Equations Radioactive decay: ... The Cambridge Handbook of Physics Formulas. Cambridge University Press.

  5. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.

  6. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    The biological half-lives "alpha half-life" and "beta half-life" of a substance measure how quickly a substance is distributed and eliminated. Physical optics : The intensity of electromagnetic radiation such as light or X-rays or gamma rays in an absorbent medium, follows an exponential decrease with distance into the absorbing medium.

  7. Geiger–Nuttall law - Wikipedia

    en.wikipedia.org/wiki/Geiger–Nuttall_law

    In nuclear physics, the Geiger–Nuttall law or Geiger–Nuttall rule relates the decay constant of a radioactive isotope with the energy of the alpha particles emitted. Roughly speaking, it states that short-lived isotopes emit more energetic alpha particles than long-lived ones.

  8. Radiation - Wikipedia

    en.wikipedia.org/wiki/Radiation

    Radiation is often categorized as either ionizing or non-ionizing depending on the energy of the radiated particles. Ionizing radiation carries more than 10 electron volts (eV), which is enough to ionize atoms and molecules and break chemical bonds. This is an important distinction due to the large difference in harmfulness to living organisms.

  9. Decay chain - Wikipedia

    en.wikipedia.org/wiki/Decay_chain

    The three long-lived nuclides are uranium-238 (half-life 4.5 billion years), uranium-235 (half-life 700 million years) and thorium-232 (half-life 14 billion years). The fourth chain has no such long-lasting bottleneck nuclide near the top, so almost all of the nuclides in that chain have long since decayed down to just before the end: bismuth-209.