Search results
Results from the WOW.Com Content Network
Gas exchange occurs in the lungs, whereby CO 2 is released from the blood, and oxygen is absorbed. The pulmonary vein returns the now oxygen-rich blood to the left atrium. [10] A separate circuit from the systemic circulation, the bronchial circulation supplies blood to the tissue of the larger airways of the lung.
The pulmonary arteries carry deoxygenated blood to the lungs, where carbon dioxide is released and oxygen is picked up during respiration. [3] Arteries are further divided into very fine capillaries which are extremely thin-walled. [4] The pulmonary veins return oxygenated blood to the left atrium of the heart. [3]
Carbon monoxide, for example, is extremely dangerous when carried to the blood via the lungs by inhalation, because carbon monoxide irreversibly binds to hemoglobin to form carboxyhemoglobin, so that less hemoglobin is free to bind oxygen, and fewer oxygen molecules can be transported throughout the blood. This can cause suffocation insidiously.
Blood vessels transport blood cells, nutrients, and oxygen to most of the tissues of a body. They also take waste and carbon dioxide away from the tissues. [ 2 ] Some tissues such as cartilage , epithelium , and the lens and cornea of the eye are not supplied with blood vessels and are termed avascular .
Coronary arteries supply blood to the myocardium and other components of the heart. Two coronary arteries originate from the left side of the heart at the beginning (root) left ventricle . There are three aortic sinuses (dilations) in the wall of the aorta just superior to the aortic semilunar valve.
The bronchial circulation is the part of the systemic circulation that supplies nutrients and oxygen to the cells that constitute the lungs, as well as carrying waste products away from them. It is complementary to the pulmonary circulation that brings deoxygenated blood to the lungs and carries oxygenated blood away from them in order to ...
The coronary arteries are the arterial blood vessels of coronary circulation, which transport oxygenated blood to the heart muscle. The heart requires a continuous supply of oxygen to function and survive, much like any other tissue or organ of the body. [1] The coronary arteries wrap around the entire heart.
The concentration of carbon dioxide (CO 2) rises in the blood when the metabolic use of oxygen (O 2), and the production of CO 2 is increased during, for example, exercise. The CO 2 in the blood is transported largely as bicarbonate (HCO 3 − ) ions, by conversion first to carbonic acid (H 2 CO 3 ), by the enzyme carbonic anhydrase , and then ...