enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  3. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    The closer the coefficient is to either −1 or 1, the stronger the correlation between the variables. If the variables are independent, Pearson's correlation coefficient is 0. However, because the correlation coefficient detects only linear dependencies between two variables, the converse is not necessarily true.

  4. Spearman's rank correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Spearman's_rank_correlation...

    Intuitively, the Spearman correlation between two variables will be high when observations have a similar (or identical for a correlation of 1) rank (i.e. relative position label of the observations within the variable: 1st, 2nd, 3rd, etc.) between the two variables, and low when observations have a dissimilar (or fully opposed for a ...

  5. Correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Correlation_coefficient

    A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [a] The variables may be two columns of a given data set of observations, often called a sample, or two components of a multivariate random variable with a known distribution. [citation needed]

  6. Phi coefficient - Wikipedia

    en.wikipedia.org/wiki/Phi_coefficient

    In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.

  7. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    [1] [2] Both describe the degree to which two random variables or sets of random variables tend to deviate from their expected values in similar ways. If X and Y are two random variables, with means (expected values) μ X and μ Y and standard deviations σ X and σ Y, respectively, then their covariance and correlation are as follows: covariance

  8. Kendall rank correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Kendall_rank_correlation...

    Intuitively, the Kendall correlation between two variables will be high when observations have a similar (or identical for a correlation of 1) rank (i.e. relative position label of the observations within the variable: 1st, 2nd, 3rd, etc.) between the two variables, and low when observations have a dissimilar (or fully different for a ...

  9. Concordance correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Concordance_correlation...

    The concordance correlation coefficient is nearly identical to some of the measures called intra-class correlations.Comparisons of the concordance correlation coefficient with an "ordinary" intraclass correlation on different data sets found only small differences between the two correlations, in one case on the third decimal. [2]