enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    The moment of inertia I is also defined as the ratio of the net angular momentum L of a system to its angular velocity ω around a principal axis, [8] [9] that is =. If the angular momentum of a system is constant, then as the moment of inertia gets smaller, the angular velocity must increase.

  3. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.

  4. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics , and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [ 1 ]

  5. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    By bringing part of the mass of their body closer to the axis, they decrease their body's moment of inertia. Because angular momentum is the product of moment of inertia and angular velocity, if the angular momentum remains constant (is conserved), then the angular velocity (rotational speed) of the skater must increase.

  6. Second polar moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_polar_moment_of_area

    The second polar moment of area, also known (incorrectly, colloquially) as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation (), in objects (or segments of an object) with an invariant cross-section and no significant warping or out-of-plane deformation. [1]

  7. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    One may instead change to a coordinate frame fixed in the rotating body, in which the moment of inertia tensor is constant. Using a reference frame such as that at the center of mass, the frame's position drops out of the equations. In any rotating reference frame, the time derivative must be replaced so that the equation becomes

  8. AOL Mail

    mail.aol.com/?icid=aol.com-nav

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Rotational spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Rotational_spectroscopy

    As a detailed example, ammonia has a moment of inertia I C = 4.4128 × 10 −47 kg m 2 about the 3-fold rotation axis, and moments I A = I B = 2.8059 × 10 −47 kg m 2 about any axis perpendicular to the C 3 axis. Since the unique moment of inertia is larger than the other two, the molecule is an oblate symmetric top. [8] Asymmetric tops ...