Search results
Results from the WOW.Com Content Network
A mixed hypothetical syllogism has two premises: one conditional statement and one statement that either affirms or denies the antecedent or consequent of that conditional statement. For example, If P, then Q. P. ∴ Q. In this example, the first premise is a conditional statement in which "P" is the antecedent and "Q" is the consequent.
The form of a modus ponens argument is a mixed hypothetical syllogism, with two premises and a conclusion: If P, then Q. P. Therefore, Q. The first premise is a conditional ("if–then") claim, namely that P implies Q. The second premise is an assertion that P, the antecedent of the conditional claim, is the case.
Disjunctive syllogism (sometimes abbreviated DS) has one of the same characteristics as modus tollens in that it contains a premise, then in a second premise it denies a statement, leading to the conclusion. In Disjunctive Syllogism, the first premise establishes two options.
Prototypical conditional sentences in English are those of the form "If X, then Y". The clause X is referred to as the antecedent (or protasis), while the clause Y is called the consequent (or apodosis). A conditional is understood as expressing its consequent under the temporary hypothetical assumption of its antecedent.
Phrased another way, denying the antecedent occurs in the context of an indicative conditional statement and assumes that the negation of the antecedent implies the negation of the consequent. It is a type of mixed hypothetical syllogism that takes on the following form: [1] If P, then Q. Not P. Therefore, not Q. which may also be phrased as
A syllogism (Ancient Greek: συλλογισμός, syllogismos, 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true.
In a Hilbert system, the premises and conclusion of the inference rules are simply formulae of some language, usually employing metavariables.For graphical compactness of the presentation and to emphasize the distinction between axioms and rules of inference, this section uses the sequent notation instead of a vertical presentation of rules.
Rules of inference are syntactical transform rules which one can use to infer a conclusion from a premise to create an argument. A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound.