Search results
Results from the WOW.Com Content Network
2-Methylpyridine, or 2-picoline, is the compound described with formula C 6 H 7 N. 2-Picoline is a colorless liquid that has an unpleasant odor similar to pyridine. It is mainly used to make vinylpyridine and the agrichemical nitrapyrin .
[4] [5] By 1870, the German chemist Adolf von Baeyer had synthesized picoline in two ways: by the dry distillation of acroleïnammoniak (CH 2 =CH-CH=N-CHOH-CH=CH 2) [6] and by heating tribromallyl (1,2,3-tribromopropane) with ammonia in ethanol. [7] In 1871, the English chemist and physicist James Dewar speculated that picoline was ...
The reaction involves the condensation reaction of aldehydes, ketones, α,β-Unsaturated carbonyl compounds, or any combination of the above, with ammonia. [1] It was reported by Aleksei Chichibabin in 1924. [2] [3] Methyl-substituted pyridines, which show widespread uses among multiple fields of applied chemistry, are prepared by this ...
The general structure of a boronic acid, where R is a substituent. A boronic acid is an organic compound related to boric acid (B(OH) 3) in which one of the three hydroxyl groups (−OH) is replaced by an alkyl or aryl group (represented by R in the general formula R−B(OH) 2). [1]
Protodeboronation is a well-known undesired side reaction, and frequently associated with metal-catalysed coupling reactions that utilise boronic acids (see Suzuki reaction). [1] For a given boronic acid, the propensity to undergo protodeboronation is highly variable and dependent on various factors, such as the reaction conditions employed and ...
The boron atom of a boronic ester or acid is sp 2 hybridized possessing a vacant p orbital, enabling these groups to act as Lewis acids. The C–B bond of boronic acids and esters are slightly longer than typical C–C single bonds with a range of 1.55-1.59 Å.
Methylpyridinium is prepared by treating pyridine with dimethylsulfate: [2]. C 5 H 5 N + (CH 3 O) 2 SO 2 → [C 5 H 5 NCH 3] + CH 3 OSO − 3. It is found in some coffee products. [3] It is not present in unroasted coffee beans, but is formed during roasting from its precursor chemical, trigonelline. [3]
The systematic name of this enzyme class is 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 4-carboxy-lyase (3-hydroxy-2-methylpyridine-5-carboxylate-forming). This enzyme is also called 3-hydroxy-2-methylpyridine-4,5-dicarboxylate 4-carboxy-lyase. This enzyme participates in vitamin B 6 metabolism.