Search results
Results from the WOW.Com Content Network
A dimmer consisted of a glass jar filled with salt water with a metal electrode at each end. As the upper electrode was moved away from the lower [3] electrode, the resistance increased and the lights got dimmer. [4] [5] [6] The brightness also depended on the concentration of salt in the water. [4]
The tables below present an example of an artificial seawater (35.00‰ of salinity) preparation devised by Kester, Duedall, Connors and Pytkowicz (1967). [1] The recipe consists of two lists of mineral salts, the first of anhydrous salts that can be weighed out, the second of hydrous salts that should be added to the artificial seawater as a solution.
Salinity is an ecological factor of considerable importance, influencing the types of organisms that live in a body of water. As well, salinity influences the kinds of plants that will grow either in a water body, or on land fed by a water (or by a groundwater). [19] A plant adapted to saline conditions is called a halophyte.
Salt compounds dissociate in aqueous solutions. This property is exploited in the process of salting out. When the salt concentration is increased, some of the water molecules are attracted by the salt ions, which decreases the number of water molecules available to interact with the charged part of the protein.
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
A classic example is when water molecules arrange around a metal ion. If the metal ion is a cation, the electronegative oxygen atom of the water molecule would be attracted electrostatically to the positive charge on the metal ion. The result is a solvation shell of water molecules that surround the ion.
The first theoretical study of the water dimer was an ab initio calculation published in 1968 by Morokuma and Pedersen. [10] Since then, the water dimer has been the focus of sustained interest by theoretical chemists concerned with hydrogen bonding—a search of the CAS database up to 2006 returns over 1100 related references (73 of them in 2005).
This equation is the equation of a straight line for as a function of pH with a slope of () volt (pH has no units). This equation predicts lower E h {\displaystyle E_{h}} at higher pH values. This is observed for the reduction of O 2 into H 2 O, or OH − , and for reduction of H + into H 2 .