Search results
Results from the WOW.Com Content Network
The human Y chromosome showing the SRY gene which codes for a protein regulating sexual differentiation. Sexual differentiation in humans is the process of development of sex differences in humans. It is defined as the development of phenotypic structures consequent to the action of hormones produced following gonadal determination. [1]
Sex differences in human physiology are distinctions of physiological characteristics associated with either male or female humans. These differences are caused by the effects of the different sex chromosome complement in males and females, and differential exposure to gonadal sex hormones during development.
Gender-based medicine, also called "gender medicine", is the field of medicine that studies the biological and physiological differences between the human sexes and how that affects differences in disease. Traditionally, medical research has mostly been conducted using the male body as the basis for clinical studies.
Sexual dimorphism was also described in the gene level and shown to extend from the sex chromosomes. Overall, about 6500 genes have been found to have sex-differential expression in at least one tissue. Many of these genes are not directly associated with reproduction, but rather linked to more general biological features.
Sexual differentiation is the process of development of the sex differences between males and females from an undifferentiated zygote. [1] [2] Sex determination is often distinct from sex differentiation; sex determination is the designation for the development stage towards either male or female, while sex differentiation is the pathway towards the development of the phenotype.
The neuroscience of sex differences is the study of characteristics that separate brains of different sexes. Psychological sex differences are thought by some to reflect the interaction of genes, hormones, and social learning on brain development throughout the lifespan.
In Y-centered sex determination, the SRY gene is the main gene in determining male characteristics, but multiple genes are required to develop testes. In XY mice, lack of the gene DAX1 on the X chromosome results in sterility, but in humans it causes adrenal hypoplasia congenita. [10]
Both male and female use voice, face, and other physical characteristics [34] to assess a potential mate's ability to reproduce, as well as their health. [33] Together with visual and chemical signals, these crucial characteristics which are likely to enhance the ability to produce offspring , as well as long-term survival prospects, can be ...