Search results
Results from the WOW.Com Content Network
OpenCV is a huge image and video processing library designed to work with many languages such as python, C/C++, Java, and more. It is the foundation for many of the applications you know that deal ...
OpenCV (Open Source Computer Vision Library) is a library of programming functions mainly for real-time computer vision. [2] Originally developed by Intel, it was later supported by Willow Garage, then Itseez (which was later acquired by Intel [3]).
Python Imaging Library is a free and open-source additional library for the Python programming language that adds support for opening, manipulating, and saving many different image file formats. It is available for Windows, Mac OS X and Linux. The latest version of PIL is 1.1.7, was released in September 2009 and supports Python 1.5.2–2.7. [3]
To explain why the image became a standard in the field, David C. Munson, editor-in-chief of IEEE Transactions on Image Processing, stated that it was a good test image because of its detail, flat regions, shading, and texture. He also noted that "the Lena image is a picture of an attractive woman.
In image processing, a kernel, convolution matrix, or mask is a small matrix used for blurring, sharpening, embossing, edge detection, and more.This is accomplished by doing a convolution between the kernel and an image.
In image processing, computer vision and related fields, an image moment is a certain particular weighted average of the image pixels' intensities, or a function of such moments, usually chosen to have some attractive property or interpretation. Image moments are useful to describe objects after segmentation.
In computer vision and image processing, Otsu's method, named after Nobuyuki Otsu (大津展之, Ōtsu Nobuyuki), is used to perform automatic image thresholding. [1] In the simplest form, the algorithm returns a single intensity threshold that separate pixels into two classes, foreground and background.
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]