Search results
Results from the WOW.Com Content Network
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [ 1 ] : 3 It has applications in a wide range of disciplines, including mechanical , aerospace , civil , chemical , and biomedical engineering , as well as geophysics , oceanography , meteorology , astrophysics ...
Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid ( liquids and gases ) with surfaces ...
A physical paradox indicates flaws in the theory.. Fluid mechanics was thus discredited by engineers from the start, which resulted in an unfortunate split – between the field of hydraulics, observing phenomena which could not be explained, and theoretical fluid mechanics explaining phenomena which could not be observed – in the words of the Chemistry Nobel Laureate Sir Cyril Hinshelwood.
In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Rheometry (from Greek ῥέος (rheos) 'stream') generically refers to the experimental techniques used to determine the rheological properties of materials, [1] that is the qualitative and quantitative relationships between stresses and strains and their derivatives.
Rheology (/ r iː ˈ ɒ l ə dʒ i /; from Greek ῥέω (rhéō) 'flow' and -λoγία (-logia) 'study of') is the study of the flow of matter, primarily in a fluid (liquid or gas) state but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force.
In computational fluid dynamics the numerical solution of the governing equations can yield all the fluid properties in space and time. This overwhelming amount of information must be displayed in a meaningful form. Thus flow visualization is equally important in computational as in experimental fluid dynamics.