Search results
Results from the WOW.Com Content Network
A non-vertical line can be defined by its slope m, and its y-intercept y 0 (the y coordinate of its intersection with the y-axis). In this case, its linear equation can be written = +. If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x 0. In this case, its equation can be written
The simplest is the slope-intercept form: = +, from which one can immediately see the slope a and the initial value () =, which is the y-intercept of the graph = (). Given a slope a and one known value () =, we write the point-slope form:
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
When the function is of only one variable, it is of the form = +, where a and b are constants, often real numbers. The graph of such a function of one variable is a nonvertical line. a is frequently referred to as the slope of the line, and b as the intercept. If a > 0 then the gradient is positive and the graph slopes upwards
b is the y-intercept of the line. x is the independent variable of the function y = f ( x ). In a manner analogous to the way lines in a two-dimensional space are described using a point-slope form for their equations, planes in a three dimensional space have a natural description using a point in the plane and a vector orthogonal to it (the ...
We can see that the slope (tangent of angle) of the regression line is the weighted average of (¯) (¯) that is the slope (tangent of angle) of the line that connects the i-th point to the average of all points, weighted by (¯) because the further the point is the more "important" it is, since small errors in its position will affect the ...
Functions of the form = have at most one -intercept, but may contain multiple -intercepts. The x {\displaystyle x} -intercepts of functions, if any exist, are often more difficult to locate than the y {\displaystyle y} -intercept, as finding the y {\displaystyle y} -intercept involves simply evaluating the function at x = 0 {\displaystyle x=0} .
where is the slope and is the y-intercept. Because this is a function of only x {\displaystyle x} , it can't represent a vertical line. Therefore, it would be useful to make this equation written as a function of both x {\displaystyle x} and y {\displaystyle y} , to be able to draw lines at any angle.