Search results
Results from the WOW.Com Content Network
The acceleration of a falling body in the absence of resistances to motion is dependent only on the gravitational field strength g (also called acceleration due to gravity). By Newton's Second Law the force F g {\displaystyle \mathbf {F_{g}} } acting on a body is given by: F g = m g . {\displaystyle \mathbf {F_{g}} =m\mathbf {g} .}
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag). This is the steady gain in speed caused exclusively by gravitational attraction .
Discontinuities in acceleration do not occur in real-world environments because of deformation, quantum mechanics effects, and other causes. However, a jump-discontinuity in acceleration and, accordingly, unbounded jerk are feasible in an idealized setting, such as an idealized point mass moving along a piecewise smooth, whole continuous path ...
The equation for universal gravitation thus takes the form: F = G m 1 m 2 r 2 , {\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}},} where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses , and G is the gravitational constant .
The g-force acting on an object under acceleration can be much greater than 1 g, for example, the dragster pictured at top right can exert a horizontal g-force of 5.3 when accelerating. The g-force acting on an object under acceleration may be downwards, for example when cresting a sharp hill on a roller coaster.
The Coriolis acceleration equation was derived by Euler in 1749, [4] [5] and the effect was described in the tidal equations of Pierre-Simon Laplace in 1778. [6] Gaspard-Gustave de Coriolis published a paper in 1835 on the energy yield of machines with rotating parts, such as waterwheels.
The weight of an object on Earth's surface is the downwards force on that object, given by Newton's second law of motion, or F = m a (force = mass × acceleration). Gravitational acceleration contributes to the total gravity acceleration, but other factors, such as the rotation of Earth, also contribute, and, therefore, affect the weight of the ...