enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of integrals of inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For a complete list of integral formulas, see lists of integrals. The inverse trigonometric functions are also known as the "arc functions". C is used for the arbitrary constant of integration that can only be determined if something about the value of the integral at some point is known. Thus each function has an infinite number of ...

  3. Inverse tangent integral - Wikipedia

    en.wikipedia.org/wiki/Inverse_tangent_integral

    The inverse tangent integral is a special function, defined by: Ti 2 ⁡ ( x ) = ∫ 0 x arctan ⁡ t t d t {\displaystyle \operatorname {Ti} _{2}(x)=\int _{0}^{x}{\frac {\arctan t}{t}}\,dt} Equivalently, it can be defined by a power series , or in terms of the dilogarithm , a closely related special function.

  4. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    While this turns out correctly, integrals and infinite sums cannot always be exchanged in this manner. To prove that the integral on the left converges to the sum on the right for real | x | ≤ 1 , {\displaystyle |x|\leq 1,} arctan ′ {\displaystyle \arctan '} can instead be written as the finite sum, [ 4 ]

  5. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    The most common convention is to name inverse trigonometric functions using an arc- prefix: arcsin(x), arccos(x), arctan(x), etc. [1] (This convention is used throughout this article.) This notation arises from the following geometric relationships: [ citation needed ] when measuring in radians, an angle of θ radians will correspond to an arc ...

  6. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.

  7. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  8. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals.

  9. Integral of inverse functions - Wikipedia

    en.wikipedia.org/wiki/Integral_of_inverse_functions

    His second proof was geometric. If () = and () =, the theorem can be written: + =.The figure on the right is a proof without words of this formula. Laisant does not discuss the hypotheses necessary to make this proof rigorous, but this can be proved if is just assumed to be strictly monotone (but not necessarily continuous, let alone differentiable).