Search results
Results from the WOW.Com Content Network
Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C.
For kinematic viscosity, the SI unit is m^2/s. In engineering, the unit is usually Stoke or centiStoke, with 1 Stoke = 0.0001 m^2/s, and 1 centiStoke = 0.01 Stoke. For liquid, the dynamic viscosity is usually in the range of 0.001 to 1 Pascal-second, or 1 to 1000 centiPoise. The density is usually on the order of 1000 kg/m^3, i.e. that of water.
The centipoise is convenient because the viscosity of water at 20 °C is about 1 cP, and one centipoise is equal to the SI millipascal second (mPa·s). The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1 ), named after Sir ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
physics, engineering (Damping ratio of oscillator or resonator; energy stored versus energy lost) Relative density: RD = hydrometers, material comparisons (ratio of density of a material to a reference material—usually water)
The friction loss is customarily given as pressure loss for a given duct length, Δp / L, in units of (US) inches of water for 100 feet or (SI) kg / m 2 / s 2. For specific choices of duct material, and assuming air at standard temperature and pressure (STP), standard charts can be used to calculate the expected friction loss.
The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [1] such as fire sprinkler systems, [2] water supply networks, and irrigation systems.
The Vogel–Fulcher–Tammann equation, also known as Vogel–Fulcher–Tammann–Hesse equation or Vogel–Fulcher equation (abbreviated: VFT equation), is used to describe the viscosity of liquids as a function of temperature, and especially its strongly temperature dependent variation in the supercooled regime, upon approaching the glass transition.