Search results
Results from the WOW.Com Content Network
A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null, the smallest infinite cardinal. In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set.
The continuum hypothesis says that =, i.e. is the smallest cardinal number bigger than , i.e. there is no set whose cardinality is strictly between that of the integers and that of the real numbers. The continuum hypothesis is independent of ZFC , a standard axiomatization of set theory; that is, it is impossible to prove the continuum ...
In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers, sometimes called the continuum.It is an infinite cardinal number and is denoted by (lowercase Fraktur "c") or | | [1]
The von Neumann cardinal assignment is a cardinal assignment that uses ordinal numbers. For a well-orderable set U, we define its cardinal number to be the smallest ordinal number equinumerous to U, using the von Neumann definition of an ordinal number. More precisely:
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that κ {\displaystyle \kappa } is a regular cardinal if and only if every unbounded subset C ⊆ κ {\displaystyle C\subseteq \kappa } has cardinality κ {\displaystyle \kappa } .
As is standard in set theory, we denote by the least infinite ordinal, which has cardinality ; it may be identified with the set of natural numbers.. A number of cardinal characteristics naturally arise as cardinal invariants for ideals which are closely connected with the structure of the reals, such as the ideal of Lebesgue null sets and the ideal of meagre sets.
In modern set theory, we usually use the Von Neumann cardinal assignment, which uses the theory of ordinal numbers and the full power of the axioms of choice and replacement. Cardinal assignments do need the full axiom of choice, if we want a decent cardinal arithmetic and an assignment for all sets.
The definition of a finite set is given independently of natural numbers: [3] Definition: A set is finite if and only if any non empty family of its subsets has a minimal element for the inclusion order. Definition: a cardinal n is a natural number if and only if there exists a finite set of which the cardinal is n. 0 = Card (∅)