Search results
Results from the WOW.Com Content Network
The \n escape sequence allows for shorter code by specifying the newline in the string literal, and for faster runtime by eliminating the text formatting operation. Also, the compiler can map the escape sequence to a character encoding system other than ASCII and thus make the code more portable.
Converts Unicode character codes, always given in hexadecimal, to their UTF-8 or UTF-16 representation in upper-case hex or decimal. Can also reverse this for UTF-8. The UTF-16 form will accept and pass through unpaired surrogates e.g. {{#invoke:Unicode convert|getUTF8|D835}} → D835.
International Components for Unicode (ICU) is an open-source project of mature C/C++ and Java libraries for Unicode support, software internationalization, and software globalization. ICU is widely portable to many operating systems and environments. It gives applications the same results on all platforms and between C, C++, and Java software.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
A numeric character reference refers to a character by its Universal Character Set/Unicode code point, and a character entity reference refers to a character by a predefined name. A numeric character reference uses the format &#nnnn; or &#xhhhh; where nnnn is the code point in decimal form, and hhhh is the code point in hexadecimal form.
A string is defined as a contiguous sequence of code units terminated by the first zero code unit (often called the NUL code unit). [1] This means a string cannot contain the zero code unit, as the first one seen marks the end of the string. The length of a string is the number of code units before the zero code unit. [1]
The Universal Coded Character Set (UCS, Unicode) is a standard set of characters defined by the international standard ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS) (plus my amendments to that standard), which is the basis of many character encodings, improving as characters from previously unrepresented typing systems are added.
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (July 2019) (Learn how and when to remove this message) This article compares Unicode encodings in two types of environments: 8-bit clean environments, and environments that forbid the use of byte values with the ...