enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Telegrapher's equations - Wikipedia

    en.wikipedia.org/wiki/Telegrapher's_equations

    The equations and their solutions are applicable from 0 Hz (i.e. direct current) to frequencies at which the transmission line structure can support higher order non-TEM modes. [2]: 282–286 The equations can be expressed in both the time domain and the frequency domain. In the time domain the independent variables are distance and time.

  3. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  4. Settling time - Wikipedia

    en.wikipedia.org/wiki/Settling_time

    Settling time depends on the system response and natural frequency. The settling time for a second order , underdamped system responding to a step response can be approximated if the damping ratio ζ ≪ 1 {\displaystyle \zeta \ll 1} by T s = − ln ⁡ ( tolerance fraction ) damping ratio × natural freq {\displaystyle T_{s}=-{\frac {\ln ...

  5. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    The faster the relative velocity, the greater the time dilation between them, with time slowing to a stop as one clock approaches the speed of light (299,792,458 m/s). In theory, time dilation would make it possible for passengers in a fast-moving vehicle to advance into the future in a short period of their own time.

  6. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    The cutoff frequency when expressed as an angular frequency (=) is simply the reciprocal of the time constant. Short conditional equations using the value for / (): f c in Hz = 159155 / τ in μs τ in μs = 159155 / f c in Hz. Other useful equations are:

  7. Speedup - Wikipedia

    en.wikipedia.org/wiki/Speedup

    More technically, it is the improvement in speed of execution of a task executed on two similar architectures with different resources. The notion of speedup was established by Amdahl's law, which was particularly focused on parallel processing. However, speedup can be used more generally to show the effect on performance after any resource ...

  8. Chirp spectrum - Wikipedia

    en.wikipedia.org/wiki/Chirp_spectrum

    In the special case where s(t) is constrained to be an up-chirp, flat topped pulse with its instantaneous frequency varying as a linear function of time, then an analytical solution is possible. For convenience, the pulse is considered to have unit amplitude and be of duration T, with the amplitude and phase defined over the time interval -T/2 ...

  9. Frequency - Wikipedia

    en.wikipedia.org/wiki/Frequency

    For cyclical phenomena such as oscillations, waves, or for examples of simple harmonic motion, the term frequency is defined as the number of cycles or repetitions per unit of time. The conventional symbol for frequency is f or ν (the Greek letter nu) is also used. [3] The period T is the time taken to complete one cycle of an oscillation or ...

  1. Related searches calculate download time with speed and frequency ratio equation solution

    settling time formulavelocity time dilation