Search results
Results from the WOW.Com Content Network
An ubiquitous example of a hydrogen bond is found between water molecules. In a discrete water molecule, there are two hydrogen atoms and one oxygen atom. The simplest case is a pair of water molecules with one hydrogen bond between them, which is called the water dimer and is often used as a model system. When more molecules are present, as is ...
2 O) is a simple triatomic bent molecule with C 2v molecular symmetry and bond angle of 104.5° between the central oxygen atom and the hydrogen atoms. Despite being one of the simplest triatomic molecules , its chemical bonding scheme is nonetheless complex as many of its bonding properties such as bond angle , ionization energy , and ...
The hydrogen bonds of water are around 23 kJ/mol (compared to a covalent O-H bond at 492 kJ/mol). Of this, it is estimated that 90% is attributable to electrostatics, while the remaining 10% is partially covalent. [95] These bonds are the cause of water's high surface tension [96] and capillary forces.
Although hydrogen bonding is a relatively weak attraction compared to the covalent bonds within the water molecule itself, it is responsible for several of the water's physical properties. These properties include its relatively high melting and boiling point temperatures: more energy is required to break the hydrogen bonds between water molecules.
The water dimer consists of two water molecules loosely bound by a hydrogen bond. It is the smallest water cluster . Because it is the simplest model system for studying hydrogen bonding in water, it has been the target of many theoretical [ 1 ] [ 2 ] [ 3 ] (and later experimental) studies that it has been called a "theoretical Guinea pig".
In chemistry, a water cluster is a discrete hydrogen bonded assembly or cluster of molecules of water. [ 1 ] [ 2 ] Many such clusters have been predicted by theoretical models ( in silico ), and some have been detected experimentally in various contexts such as ice , bulk liquid water, in the gas phase , in dilute mixtures with non-polar ...
A hydrocarbon chain or a similar nonpolar region of a large molecule is incapable of forming hydrogen bonds with water. Introduction of such a non-hydrogen bonding surface into water causes disruption of the hydrogen bonding network between water molecules. The hydrogen bonds are reoriented tangentially to such surface to minimize disruption of ...
As a result, there is short-ranged orientational order in addition to the positional order mentioned above. Orientational order is especially important in hydrogen-bonded liquids like water. [51] [52] The strength and directional nature of hydrogen bonds drives the formation of local "networks" or "clusters" of molecules. Due to the relative ...