Search results
Results from the WOW.Com Content Network
If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value). [4] One can similarly define the Cartesian product of n sets, also known as an n-fold Cartesian product, which can be represented by an n-dimensional array, where each element is an n-tuple.
In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...
The product in this category is given by the cartesian product of sets. The coproduct is given by the disjoint union: given sets A i where i ranges over some index set I, we construct the coproduct as the union of A i ×{i} (the cartesian product with i serves to ensure that all the components stay disjoint).
In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces.
The Cartesian product of K 2 and a path graph is a ladder graph. The Cartesian product of two path graphs is a grid graph. The Cartesian product of n edges is a hypercube: =. Thus, the Cartesian product of two hypercube graphs is another hypercube: Q i Q j = Q i+j.
Given ideals I and J on underlying sets X and Y respectively, one forms the skew or Fubini product , an ideal on the Cartesian product, as follows: For any subset , {: {: , }} That is, a set lies in the product ideal if only a negligible collection of x-coordinates correspond to a non-negligible slice of A in the y-direction.
The axiom of choice occurs again in the study of (topological) product spaces; for example, Tychonoff's theorem on compact sets is a more complex and subtle example of a statement that requires the axiom of choice and is equivalent to it in its most general formulation, [3] and shows why the product topology may be considered the more useful ...
Graph pebbling is a mathematical game played on a graph with zero or more pebbles on each of its vertices. 'Game play' is composed of a series of pebbling moves. A pebbling move on a graph consists of choosing a vertex with at least two pebbles, removing two pebbles from it, and adding one to an adjacent vertex (the second removed pebble is discarded from play). π(G), the pebbling number of a ...