Search results
Results from the WOW.Com Content Network
Dynamic viscosity is a material property which describes the resistance of a fluid to shearing flows. It corresponds roughly to the intuitive notion of a fluid's 'thickness'. For instance, honey has a much higher viscosity than water. Viscosity is measured using a viscometer. Measured values span several orders of magnitude.
In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin, the constant of proportionality being the coefficient of viscosity. In a non-Newtonian fluid, the relation between the shear stress and the shear rate is different. The fluid can even exhibit time-dependent viscosity. Therefore ...
Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. [1] For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. [2]
Example: in the case of a sound wave with a definitive frequency that alternatively compresses and expands a fluid element, the second viscosity coefficient depends on the frequency of the wave. This dependence is called the dispersion .
MÄnuka honey is an example of a thixotropic material.. Thixotropy is a time-dependent shear thinning property. Certain gels or fluids that are thick or viscous under static conditions will flow (become thinner, less viscous) over time when shaken, agitated, shear-stressed, or otherwise stressed (time-dependent viscosity).
In continuum mechanics, rheopecty or rheopexy is the rare property of some non-Newtonian fluids to show a time-dependent increase in viscosity (time-dependent viscosity); the longer the fluid undergoes shearing force, the higher its viscosity. [1] Rheopectic fluids, such as some lubricants, thicken or solidify when shaken.
The same goes for shear viscosity. For a Newtonian fluid the shear viscosity is a pure fluid property, but for a non-Newtonian fluid it is not a pure fluid property due to its dependence on the velocity gradient. Neither shear nor volume viscosity are equilibrium parameters or properties, but transport properties.
Boger fluids are named after David V. Boger, who in the late 1970s was the primary researcher pushing for the study of constant viscosity elastic liquids. [2] He released his first paper on Boger fluids in 1977, titled "A Highly Elastic Constant-Viscosity Fluid", where he described the ideal fluid for experimentation as a fluid that is "highly viscous and highly elastic at room temperature and ...