enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    The moons of the trans-Neptunian objects (other than Charon) have not been included, because they appear to follow the normal situation for TNOs rather than the moons of Saturn and Uranus, and become solid at a larger size (900–1000 km diameter, rather than 400 km as for the moons of Saturn and Uranus).

  3. List of Solar System objects by size - Wikipedia

    en.wikipedia.org/wiki/List_of_Solar_System...

    For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.

  4. List of natural satellites - Wikipedia

    en.wikipedia.org/wiki/List_of_natural_satellites

    Of the Solar System's eight planets and its nine most likely dwarf planets, six planets and seven dwarf planets are known to be orbited by at least 300 natural satellites, or moons. At least 19 of them are large enough to be gravitationally rounded; of these, all are covered by a crust of ice except for Earth's Moon and Jupiter's Io. [1]

  5. Moon - Wikipedia

    en.wikipedia.org/wiki/Moon

    The Moon is Earth's only natural satellite. It orbits at an average distance of 384,400 km (238,900 mi), about 30 times the diameter of Earth. Tidal forces between Earth and the Moon have synchronized the Moon's orbital period (lunar month) with its rotation period at 29.5 Earth days, causing the same side of the Moon to always face Earth.

  6. Regular moon - Wikipedia

    en.wikipedia.org/wiki/Regular_moon

    The regular moons of Neptune are likely examples of this, as the capture of Neptune's largest moon—Triton—would have severely disrupted the existing primordial moon system. Once Triton was tidally dampened into a lower-eccentricity orbit, the debris resulting from the disruption of the primordial moons re-accreted into the current regular ...

  7. Gravitation of the Moon - Wikipedia

    en.wikipedia.org/wiki/Gravitation_of_the_Moon

    The gravitational constant G is less accurate than the product of G and masses for Earth and Moon. Consequently, it is conventional to express the lunar mass M multiplied by the gravitational constant G. The lunar GM = 4902.8001 km 3 /s 2 from GRAIL analyses. [12] [11] [19] The mass of the Moon is M = 7.3458 × 10 22 kg and the mean density is ...

  8. Hill sphere - Wikipedia

    en.wikipedia.org/wiki/Hill_sphere

    The actual Hill radius for the Earth-Moon pair is on the order of 60,000 km (i.e., extending less than one-sixth the distance of the 378,000 km between the Moon and the Earth). [9] In the Earth-Sun example, the Earth (5.97 × 10 24 kg) orbits the Sun (1.99 × 10 30 kg) at a distance of 149.6 million km, or one astronomical unit (AU). The Hill ...

  9. Planetary-mass moon - Wikipedia

    en.wikipedia.org/wiki/Planetary-mass_moon

    Planetary-mass moons larger than Pluto, the largest Solar dwarf planet. A planetary-mass moon is a planetary-mass object. They are large and ellipsoidal (sometimes spherical) in shape. Moons may be in hydrostatic equilibrium due to tidal or radiogenic heating, in some cases forming a subsurface ocean.