enow.com Web Search

  1. Ad

    related to: aerodynamic efficiency of a wing car wash company clips 12 pack

Search results

  1. Results from the WOW.Com Content Network
  2. Washout (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Washout_(aeronautics)

    (This can be described as aerodynamic wash-in.) Winglets also promote a greater bending moment at the wing root, possibly necessitating a heavier wing structure. Installation of winglets may necessitate greater aerodynamic washout in order to provide the required resistance to spinning, or to optimise the spanwise lift distribution.

  3. Closed wing - Wikipedia

    en.wikipedia.org/wiki/Closed_wing

    Nonplanar wings: results for the optimal aerodynamic efficiency ratio ε. The parameter ε is the optimal aerodynamic efficiency ratio [25] and represents the ratio between the aerodynamic efficiency of a given non-planar wing and the corresponding efficiency of a reference classical cantilevered wing with the same wing span and total lift ...

  4. Oswald efficiency number - Wikipedia

    en.wikipedia.org/wiki/Oswald_efficiency_number

    For conventional fixed-wing aircraft with moderate aspect ratio and sweep, Oswald efficiency number with wing flaps retracted is typically between 0.7 and 0.85. At supersonic speeds, Oswald efficiency number decreases substantially. For example, at Mach 1.2 Oswald efficiency number is likely to be between 0.3 and 0.5. [1]

  5. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.

  6. Lift-induced drag - Wikipedia

    en.wikipedia.org/wiki/Lift-induced_drag

    A wing of infinite span and uniform airfoil segment (or a 2D wing) would experience no induced drag. [11] The drag characteristics of a wing with infinite span can be simulated using an airfoil segment the width of a wind tunnel. [12] An increase in wingspan or a solution with a similar effect is one way to reduce induced drag.

  7. Glossary of aerospace engineering - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_aerospace...

    Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [23] Aspect ratio and other features of the planform are often used to predict the aerodynamic efficiency of a wing because the lift-to-drag ratio increases with aspect ratio, improving fuel economy in aircraft.

  8. NASA’s weird wing design could lead to futuristic, fuel ...

    www.aol.com/lifestyle/nasa-weird-wing-design...

    The wings are longer than the ones on previous versions of that airplane—a design change that helps increase the craft’s overall fuel efficiency. NASA’s weird wing design could lead to ...

  9. Elliptical wing - Wikipedia

    en.wikipedia.org/wiki/Elliptical_wing

    An elliptical planform is the most efficient aerodynamic shape for an untwisted wing, leading to the lowest amount of induced drag. The semi-elliptical planform was skewed so that the centre of pressure, which occurs near the quarter-chord position at all but the highest speeds, was close to the main spar, preventing the wings from twisting ...

  1. Ad

    related to: aerodynamic efficiency of a wing car wash company clips 12 pack