Search results
Results from the WOW.Com Content Network
The infrared atmospheric window is an atmospheric window in the infrared spectrum where there is relatively little absorption of terrestrial thermal radiation by atmospheric gases. [1] The window plays an important role in the atmospheric greenhouse effect by maintaining the balance between incoming solar radiation and outgoing IR to space.
Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functional groups in solid, liquid, or gaseous forms.
An infrared gas analyzer measures trace gases by determining the absorption of an emitted infrared light source through a certain air sample. Trace gases found in the Earth's atmosphere become excited under specific wavelengths found in the infrared range. The concept behind the technology can be understood as testing how much of the light is ...
A nondispersive infrared sensor (or NDIR sensor) is a simple spectroscopic sensor often used as a gas detector.It is non-dispersive in the fact that no dispersive element (e.g a prism or diffraction grating as is often present in other spectrometers) is used to separate out (like a monochromator) the broadband light into a narrow spectrum suitable for gas sensing.
An infrared spectroscopy correlation table (or table of infrared absorption frequencies) is a list of absorption peaks and frequencies, typically reported in wavenumber, for common types of molecular bonds and functional groups.
The individual absorption spectra of major greenhouse gases plus Rayleigh scattering are shown in the lower panel. [1] An atmospheric window is a region of the electromagnetic spectrum that can pass through the atmosphere of Earth. The optical, infrared and radio windows comprise the three main atmospheric windows. [2]
The vibrational and rotational excited states of greenhouse gases that emit thermal infrared radiation are in LTE up to about 60 km. [7] Radiative transfer calculations show negligible change (0.2%) due to absorption and emission above about 50 km. Schwarzschild's equation therefore is appropriate for most problems involving thermal infrared in ...
The key components are an infrared source, a light tube, an interference (wavelength) filter, and an infrared detector. The gas is pumped or diffuses into the light tube, and the electronics measure the absorption of the characteristic wavelength of light. NDIR sensors are most often used for measuring carbon dioxide. [2]