Search results
Results from the WOW.Com Content Network
Statistical inference is the process of using data analysis to infer properties of an underlying probability distribution. [1] Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population.
The theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. [1] [2] The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches.
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
Causal inference is the process of determining the independent, actual effect of a particular phenomenon that is a component of a larger system. The main difference between causal inference and inference of association is that causal inference analyzes the response of an effect variable when a cause of the effect variable is changed.
This generally means that descriptive statistics, unlike inferential statistics, is not developed on the basis of probability theory, and are frequently nonparametric statistics. [3] Even when a data analysis draws its main conclusions using inferential statistics, descriptive statistics are generally also presented. [4]
Like univariate analysis, bivariate analysis can be descriptive or inferential. It is the analysis of the relationship between the two variables. [ 1 ] Bivariate analysis is a simple (two variable) special case of multivariate analysis (where multiple relations between multiple variables are examined simultaneously).
Causal analysis is the field of experimental design and statistical analysis pertaining to establishing cause and effect. [1] [2] Exploratory causal analysis (ECA), also known as data causality or causal discovery [3] is the use of statistical algorithms to infer associations in observed data sets that are potentially causal under strict assumptions.
In statistics education, informal inferential reasoning (also called informal inference) refers to the process of making a generalization based on data (samples) about a wider universe (population/process) while taking into account uncertainty without using the formal statistical procedure or methods (e.g. P-values, t-test, hypothesis testing, significance test).