Search results
Results from the WOW.Com Content Network
Frequency-dependent attenuation of electromagnetic radiation in standard atmosphere In many cases, attenuation is an exponential function of the path length through the medium. In optics and in chemical spectroscopy , this is known as the Beer–Lambert law .
Acoustic attenuation in water is frequency-squared dependent, namely =. Acoustic attenuation in many metals and crystalline materials is frequency-independent, namely =. [10] In contrast, it is widely noted that the of viscoelastic materials is between 0 and 2.
In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...
The attenuation coefficient of a volume, denoted μ, is defined as [6] =, where Φ e is the radiant flux;; z is the path length of the beam.; Note that for an attenuation coefficient which does not vary with z, this equation is solved along a line from =0 to as:
In telecommunications, the term attenuation constant, also called attenuation parameter or attenuation coefficient, is the attenuation of an electromagnetic wave propagating through a medium per unit distance from the source. It is the real part of the propagation constant and is measured in nepers per metre.
Path loss, or path attenuation, is the reduction in power density (attenuation) of an electromagnetic wave as it propagates through space. [1] Path loss is a major component in the analysis and design of the link budget of a telecommunication system. This term is commonly used in wireless communications and signal propagation.
The cutoff frequency is the critical frequency between propagation and attenuation, which corresponds to the frequency at which the longitudinal wavenumber is zero. It is given by ω c = c ( n π a ) 2 + ( m π b ) 2 {\displaystyle \omega _{c}=c{\sqrt {\left({\frac {n\pi }{a}}\right)^{2}+\left({\frac {m\pi }{b}}\right)^{2}}}} The wave equations ...
For a given frequency, the wavelength of an electromagnetic wave is affected by the material in which it is propagating. ... mass attenuation coefficient, ...