Search results
Results from the WOW.Com Content Network
Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
Watts and Strogatz then proposed a novel graph model, currently named the Watts and Strogatz model, with (i) a small average shortest path length, and (ii) a large clustering coefficient. The crossover in the Watts–Strogatz model between a "large world" (such as a lattice) and a small world was first described by Barthelemy and Amaral in 1999 ...
Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...
In the mathematical field of graph theory, the distance between two vertices in a graph is the number of edges in a shortest path (also called a graph geodesic) connecting them. This is also known as the geodesic distance or shortest-path distance. [1] Notice that there may be more than one shortest path between two vertices. [2]
In graph theory, betweenness centrality is a measure of centrality in a graph based on shortest paths. For every pair of vertices in a connected graph , there exists at least one shortest path between the vertices, that is, there exists at least one path such that either the number of edges that the path passes through (for unweighted graphs ...
It should not be confused with the diameter of the network, which is defined as the longest geodesic, i.e., the longest shortest path between any two nodes in the network (see Distance (graph theory)). The average path length distinguishes an easily negotiable network from one, which is complicated and inefficient, with a shorter average path ...
Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...
An omniscient path-planner, having access to the complete social graph of the country, would be able to choose a shortest path that is, in general, shorter than the path produced by a greedy algorithm that makes local decisions only. A description of heterogeneous social networks still remains an open question.