enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uniformly connected space - Wikipedia

    en.wikipedia.org/wiki/Uniformly_connected_space

    In topology and related areas of mathematics a uniformly connected space or Cantor connected space is a uniform space U such that every uniformly continuous function from U to a discrete uniform space is constant. A uniform space U is called uniformly disconnected if it is not uniformly connected.

  3. Fulton–Hansen connectedness theorem - Wikipedia

    en.wikipedia.org/wiki/Fulton–Hansen...

    In mathematics, the Fulton–Hansen connectedness theorem is a result from intersection theory in algebraic geometry, for the case of subvarieties of projective space with codimension large enough to make the intersection have components of dimension at least 1.

  4. Connectedness - Wikipedia

    en.wikipedia.org/wiki/Connectedness

    A topological space is said to be connected if it is not the union of two disjoint nonempty open sets. [2] A set is open if it contains no point lying on its boundary; thus, in an informal, intuitive sense, the fact that a space can be partitioned into disjoint open sets suggests that the boundary between the two sets is not part of the space, and thus splits it into two separate pieces.

  5. Connected space - Wikipedia

    en.wikipedia.org/wiki/Connected_space

    As a consequence, a notion of connectedness can be formulated independently of the topology on a space. To wit, there is a category of connective spaces consisting of sets with collections of connected subsets satisfying connectivity axioms; their morphisms are those functions which map connected sets to connected sets ( Muscat & Buhagiar 2006 ).

  6. Connectedness theorem - Wikipedia

    en.wikipedia.org/wiki/Connectedness_theorem

    Zariski's connectedness theorem, a generalization of Zariski's main theorem Topics referred to by the same term This disambiguation page lists mathematics articles associated with the same title.

  7. Uniformization theorem - Wikipedia

    en.wikipedia.org/wiki/Uniformization_theorem

    Every Riemann surface is the quotient of free, proper and holomorphic action of a discrete group on its universal covering and this universal covering, being a simply connected Riemann surface, is holomorphically isomorphic (one also says: "conformally equivalent" or "biholomorphic") to one of the following:

  8. Uniform integrability - Wikipedia

    en.wikipedia.org/wiki/Uniform_integrability

    Uniform integrability is an extension to the notion of a family of functions being dominated in which is central in dominated convergence. Several textbooks on real analysis and measure theory use the following definition: [1] [2] Definition A: Let (,,) be a positive measure space.

  9. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).