enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convenience sampling - Wikipedia

    en.wikipedia.org/wiki/Convenience_sampling

    Convenience sampling can be used by almost anyone and has been around for generations. One of the reasons that it is most often used is due to the numerous advantages it provides. This method is extremely speedy, easy, readily available, and cost-effective, causing it to be an attractive option to most researchers.

  3. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    Nonprobability sampling methods include convenience sampling, quota sampling, and purposive sampling. In addition, nonresponse effects may turn any probability design into a nonprobability design if the characteristics of nonresponse are not well understood, since nonresponse effectively modifies each element's probability of being sampled.

  4. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    Where is the sample size, = / is the fraction of the sample from the population, () is the (squared) finite population correction (FPC), is the unbiassed sample variance, and (¯) is some estimator of the variance of the mean under the sampling design. The issue with the above formula is that it is extremely rare to be able to directly estimate ...

  5. Quota sampling - Wikipedia

    en.wikipedia.org/wiki/Quota_sampling

    For example, an interviewer may be told to sample 200 females and 300 males between the age of 45 and 60. This means that individuals can put a demand on who they want to sample (targeting). This second step makes the technique non-probability sampling. In quota sampling, there is non-random sample selection and this can be unreliable.

  6. Survey sampling - Wikipedia

    en.wikipedia.org/wiki/Survey_sampling

    This type of sampling is common in non-probability market research surveys. Convenience Samples: The sample is composed of whatever persons can be most easily accessed to fill out the survey. In non-probability samples the relationship between the target population and the survey sample is immeasurable and potential bias is unknowable.

  7. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...

  8. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    This sampling process is repeated many times as for other bootstrap methods. Considering the centered sample mean in this case, the random sample original distribution function is replaced by a bootstrap random sample with function ^, and the probability distribution of ¯ is approximated by that of ¯, where = ^, which is the expectation ...

  9. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    A variety of data re-sampling techniques are implemented in the imbalanced-learn package [1] compatible with the scikit-learn Python library. The re-sampling techniques are implemented in four different categories: undersampling the majority class, oversampling the minority class, combining over and under sampling, and ensembling sampling.