Search results
Results from the WOW.Com Content Network
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
This was originally produced to describe the Moody chart, which plots the Darcy-Weisbach Friction factor against Reynolds number. The Darcy Weisbach Formula f D {\displaystyle f_{D}} , also called Moody friction factor, is 4 times the Fanning friction factor f {\displaystyle f} and so a factor of 1 4 {\displaystyle {\frac {1}{4}}} has been ...
Lewis Ferry Moody (5 January 1880 – 18 April 1953 [1]) was an American engineer and professor, best known for the Moody chart, a diagram capturing relationships between several variables used in calculating fluid flow through a pipe.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...
If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks. Physics Wikipedia:WikiProject Physics Template:WikiProject Physics physics: Mid: This article has been rated as Mid-importance on the project's importance scale. This article is supported by Fluid Dynamics Taskforce.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
First law of thermodynamics (fluid mechanics) Flow conditioning; Flow in partially full conduits; Flow net; Flow, Turbulence and Combustion; Flowability; Fluid dynamic gauge; Fluid flow through porous media; Fluid kinematics; Fluid–structure interaction; FluoroPOSS; Free surface; Free surface effect; Friction loss