enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    This is a 21 class land use image dataset meant for research purposes. There are 100 images for each class. 2,100 Image chips of 256x256, 30 cm (1 foot) GSD Land cover classification 2010 [175] Yi Yang and Shawn Newsam SAT-4 Airborne Dataset Images were extracted from the National Agriculture Imagery Program (NAIP) dataset.

  3. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    OpenML: [494] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [495] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...

  4. MNIST database - Wikipedia

    en.wikipedia.org/wiki/MNIST_database

    Extended MNIST (EMNIST) is a newer dataset developed and released by NIST to be the (final) successor to MNIST. [15] [16] MNIST included images only of handwritten digits. EMNIST includes all the images from NIST Special Database 19 (SD 19), which is a large database of 814,255 handwritten uppercase and lower case letters and digits.

  5. CIFAR-10 - Wikipedia

    en.wikipedia.org/wiki/CIFAR-10

    CIFAR-10 is a labeled subset of the 80 Million Tiny Images dataset from 2008, published in 2009. When the dataset was created, students were paid to label all of the images. [5] Various kinds of convolutional neural networks tend to be the best at recognizing the images in CIFAR-10.

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Fashion MNIST - Wikipedia

    en.wikipedia.org/wiki/Fashion_MNIST

    The Fashion MNIST dataset is a large freely available database of fashion images that is commonly used for training and testing various machine learning systems. [1] [2] Fashion-MNIST was intended to serve as a replacement for the original MNIST database for benchmarking machine learning algorithms, as it shares the same image size, data format and the structure of training and testing splits.

  8. 80 Million Tiny Images - Wikipedia

    en.wikipedia.org/wiki/80_Million_Tiny_Images

    The 80 Million Tiny Images dataset was retired from use by its creators in 2020, [5] after a paper by researchers Abeba Birhane and Vinay Prabhu found that some of the labeling of several publicly available image datasets, including 80 Million Tiny Images, contained racist and misogynistic slurs which were causing models trained on them to exhibit racial and sexual bias.

  9. Object categorization from image search - Wikipedia

    en.wikipedia.org/wiki/Object_categorization_from...

    In other words, object categorization from image search is one component of the system. OPTIMOL, for example, uses a classifier trained on images collected during previous iterations to select additional images for the returned dataset. Examples of CBIR methods that model object categories from image search are: Fergus et al., 2004 [5]